超超临界机组水冷壁爆管原因分析

朱秋瑜1

西北工业大学玛丽女王工程学院,陕西西安 710054

摘要: 通过外观检查及几何尺寸测量、化学成分分析、金相组织检验、力学性能等方法,对某电厂超超临 界机组水冷壁泄漏管样进行了分析。结果表明:水冷壁管样发生爆破是由于较短时间的较大幅度超温导致的过 热爆管,超温幅度超过12Cr1MoVG 材料的 AC3 点。

关键词:水冷壁;显微组织;超温爆管

作者简介:朱秋瑜(2004-),女,汉族,河北盐山人,本科在读,研究方向:材料科学与工程。

0 前言

水冷壁是锅炉重要的受热承压部件,通常分布在 炉膛周围,长期承受外部烟气的高温、腐蚀以及烟气 中固体颗粒的磨损,还受到内部锅炉水的压力、腐蚀 以及冲刷作用,工作环境十分恶劣和复杂^[1-4]。本文 以锅炉爆管水冷壁管为研究对象,对爆管原因进行了 分析,并提出相应的处理措施,以保障机组安全可靠 运行。

某锅炉为DG2906/29.3-II3型超超临界变压运行 直流炉,一次中间再热、单炉膛、平衡通风、固态排 渣、紧身封闭布置、全钢构架,锅炉采用 Π型布置 方式。最大连续蒸发量 2906.25t/h,过热蒸汽出口 温度 605℃、出口压力 29.3MPa,再热蒸汽出口温度 623℃、出口压力 5.75MPa。锅炉炉膛水冷壁采用全焊 式膜式水冷壁,分上下两部分。下部水冷壁采用全焊 接的螺旋上升膜式管屏,螺旋水冷壁管采用内螺纹管。 上部水冷壁采用全焊接的垂直上升膜式管屏,螺旋水 冷壁与上部垂直水冷壁的过渡方式采用中间混合集箱 形式。从水冷壁进口到折焰角下的炉膛下部水冷壁都 采用螺旋盘绕膜式管圈。

1 爆管情况

2024年5月,折焰角水冷壁从炉左数第233根弯 头部位发生爆破,现场爆管照片及爆管位置示意图如 图1所示。锅炉自2018年12月投产至爆管累计运行 3.6万小时。爆破管设计材料为12Cr1MoVG,规格为 Φ31.8×6.5mm。为查找水冷壁管爆管的原因,本文 对水冷壁爆管样进行了试验分析。

(a)现场照片

(b)爆管位置示意图

图1 现场爆管照片及爆管位置示意图

2 试验方法及结果

2.1 外观检查及几何尺寸测量

爆管样的外观形貌如图2所示。爆口位于向火面, 呈"鱼嘴状",横向开口最大处为17mm,纵向开口 50mm,爆口边缘已明显减薄。爆口附近外壁略显黑色

50000,爆口边缘已明显减薄。爆口附近外壁略显黑色的氧化皮已沿管子纵向开裂。

(a) 爆口形貌

(b) 爆口横截面形貌

图 2 爆口形貌

对管样不同位置金相试样进行壁厚及外径测量, 如表1所列。结果表明:除向火面爆口附近壁厚存在 减薄外,其余向火面壁厚减薄量未超过标准要求,背

火面未见明显减薄,管样发生了明显的胀粗。

测量位置	壁厚(mm)	外 径 (mm)	胀粗率	
	向火面 (爆口)	背火面	向 火 - 背火	(%)	
爆口开口最大 处	2.22	6.70	43.79	37.70	
爆口尖端处	2.84	6.78	38.52	21.13	
距爆口开口最 大处约 400mm	5.85	6.50	33.36	4.91	
距爆口开口 最大处约 600mm	6.09	6.62	33.12	4.15	

表1 壁厚及外径测量结果

2.2 化学成分分析

在管样上截取块样进行化学成分分析,化学成分 结果如表 2 所列。结果表明:管样的化学成分符合标 准要求。

表2 化学成分结果 (wt%)

	С	Si	S	Р	Mn	Cr	Mo	V
爆管样	0.14	0.23	0.006	0.010	0.58	1.03	0.25	0.18
标准值	0.08~ 0.15	0. 17~ 0. 37	≪ 0. 010	≪ 0. 025	0. 40~ 0. 70	0.9~ 1.20	0. 25~ 0. 35	0. 15~ 0. 30

2.3 金相组织检验

在爆管样上距离爆口不同位置处截取金相试样, 经粗、细磨、抛光和浸蚀后在光学显微镜下对显微形 貌进行观察分析。结果表明:管样爆口边缘位置存在 大量的微裂纹和孔洞,显微组织已被拉长变形,爆口 附近显微组织全为相变组织,平均晶粒度为9~10级, 随着距爆口距离的增加,铁素体含量逐渐增加,相变 组织逐渐减少,平均晶粒度恢复为7~8级。爆口对侧 显微组织由铁素体加少量相变组织,平均晶粒度为 9~10级,随着距爆口距离的增加,显微组织逐渐恢复 正常,为铁素体加贝氏体,平均晶粒度7~8级。金相 显微组织形貌如图3所示。

(a) 爆口边缘

(d) 爆口处对侧

(e) 爆口对侧距爆口约 400mm 处

图 3 试样各部位显微组织

2.4 硬度试验

对各金相试样进行维氏硬度试验(F=98.07N), 硬度试验结果如表5所列,结果表明:除1号试样爆 口处硬度超过标准要求外,其余位置硬度均符合标准 要求(140~205HV),但爆口侧硬度均高于爆口对侧。

测量位置	测量部位	测点1	测点2	平均值
爆口开口最	爆口侧	308	300	304
大处	爆口对侧	148	151	150
距爆口开口	爆口侧	179	179	179
最大处约 400mm	爆口对侧	144	144	144
距爆口开口	爆口侧	164	166	165
最大处约 600mm	爆口对侧	146	143	145

表 5 维氏硬度试验结果 (HV10)

2.5 室温拉伸试验

在爆口下方直管段加工2个拉伸试样进行室温拉 伸试验,室温拉伸试验结果见表6。结果表明:除爆 口对侧(背火面)的抗拉强度低于标准要求的下限外, 其余位置室温拉伸性能均符合标准要求,但爆口侧抗 拉强度远大于爆口对侧。

表6 室温拉伸试验结果列表

试样位置	抗拉强度 Rm(MPa)	规定塑性延伸 强度 Rp0.2 (MPa)	断后伸长 率 A(%)
爆口侧	537	303	26.0
爆口对侧	459	325	27.0
GB/T 5310- 2023 12Cr1MoVG	470~640	≥ 255	≥ 21

3分析与讨论

管样的化学成分符合标准要求,表明不存在错用 材料问题。从现场检验及爆口附近壁厚减薄和管径胀 粗等特征看,爆口呈典型的超温过热特征[5]。

12Cr1MoVG 钢为珠光体低合金热强钢,具有较高的热强性能和持久塑性,主要用于壁温不大于 570℃ 的受热面管,壁温不大于 555℃的集箱、蒸汽管道 以及锅炉大型锻件,其相变温度转变点为 AC1: 774[~]805℃、AC3:882[~]923℃[6]。爆口附近的金相组 织显示,组织已发生相变,晶粒度也变得更细,说明 爆口处的壁温不仅超过了 AC1 点,还超过了 AC3 点, 已进入了 12Cr1MoV 钢的完全奥氏体化区域,在此温 度下,水冷壁管的高温强度已不能承受内压应力而发 生迅速爆破,从而使爆口附近壁厚也发生明显减薄。 爆口处由于介质与爆口处管壁有较大的温差,在其急 剧冷却作用下,显微组织来不及发生再结晶过程,从 而将爆管时的淬硬组织保留下来,导致爆口附近的硬 度也相对较高。

综上所述,管样发生爆破是由于较短时间的较大 幅度超温导致的过热爆管,超温幅度超过12Cr1MoVG 材料的AC3点。

发生爆破位置位于水冷壁折焰角处,此处在正常 运行过程中壁温大约为520℃,据了解爆破前电厂刚 进行了检修工作,推断内部存在异物堵塞情况导致水 冷壁局部超温。

4 结论

对1号锅炉的1根水冷壁泄漏管样进行外观检查 及几何尺寸测量、化学成分分析、金相组织检验、硬 度试验和室温拉伸试验。结论如下:

水冷壁管样发生爆破是由于较短时间的较大幅度 超温导致的过热爆管,超温幅度超过12Cr1MoVG材料 的AC3点。

水冷壁检修换管过程中应注意清洁度控制,防止 车削物等异物进入管内,并测试水溶纸的可溶性。

参考文献

[1] 熊小鹤, 丁鹏, 等. 某中储式锅炉水冷壁高 温腐蚀特征分析 [J]. 锅炉技术, 2024, 55(6):12-19

[2] 殷尊. 超超临界 1000MW 机组锅炉水冷壁爆管 原因分析 [J]. 热力发电, 2013, 42(7):92-95.

[3] 马飞,陈衡.超临界锅炉水冷壁泄漏分析及 对策[J]. 洁净煤技术,2024,30(2):358-364.

[4] 潘泊锦,姜勇,巩建鸣. 电厂水冷壁管爆管 失效的原因[J]. 腐蚀与防护,2023,44(11):110-114.

[5]周昕,等.火力发电厂锅炉受热面失效分析 与防护[D].北京:中国电力出版社,2004:48-55.

[6] 姜求志,王金瑞,等.火力发电厂金属材料 手册[D].北京:中国电力出版社,2001:166-192.