参考文献
[1] Liu L, Yu W. Massive Connectivity WithMassive MIMO—Part I: Device Activity Detectionand Channel Estimation[J]. IEEE Transactions91on Signal Processing, 2018, 66(11):2933–2946.
[2] Jiang S, Yuan X, Wang X, et al. JointUser Identiffcation, Channel Estimation, andSignal Detection for Grant-Free NOMA[J]. IEEETransactions on Wireless Communications, 2020,19(10):6960–6976.
[3]Ahn Y, Kim W, Shim B. Active UserDetection and ChannelEstimation for MassiveMachine-Type Communication: Deep LearningApproach[J]. IEEE Internet of Things Journal,2021:1–1.
[4] Wu X, Zhang S, Yan J. A CNN Architecturefor Learning Device Activity From MMV[J]. IEEECommunications Letters, 2021, 25(9):2933–2937.
[5] Zhao T, Li F, Tian P. A Deep-Learning Method for Device Activity Detection in mMTC Under Imperfect CSI Based on Variational Autoencoder[J]. IEEE Transactions Vehicular Technology, 2020, 69(7):7981–7986.
[6] Ye H, Li G Y, Juang B H. Power of DeepLearning for Channel Estimation and Signal Detection in OFDM Systems[J]. IEEE Wireless
Communications Letters, 2018, 7(1):114–117.
[7] Wei L, Lu S, Kamabe H, et al. User Identiffcation and Channel Estimation by DNN
Based Decoder on Multiple-Access Channel[C]//GLOBECOM 2020 - 2020 IEEE Global Communications Conference. Taipei, Taiwan, 2020:1–6.。
[8] 戴维佳. mMTC非正交多址接入中的活跃用户检测和信道估计[D]. 中国科学技术大学, 2019.[9] Donoho D L, Maleki A, Montanari A.Message-passing algorithms for compressedsensing[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(45):18914.