33
概率统计与函数交汇视角下的最值问题求解策略
  • ISSN:3080-4299(P) 3104-9443(O)
  • DOI:10.64090/3104-9443.20250319
  • 出版频率:月刊
  • 语言:中文
  • 收录数据库:Crossref

概率统计与函数交汇视角下的最值问题求解策略

陈思羽 蒋业阳
江西科技师范大学 330038
【摘要】:在新高考改革的背景下,高考试题的设计日益强调学科知识的创新性和应用性,同时更加注重考查学生对知识的综合运用能力。概率统计作为常考知识点,与其他知识的综合考察,不仅符合高考命题的趋势,同时题目具有一定的难度,思维性较强,也是新课标核心素养下的趋势。基于此,本文聚焦于概率统计中的最值问题,探讨导数在这一领域的创新应用,并对概率统计中的最值问题进行科学分类,结合典型例题,详细阐述如何运用微
分学方法进行高效求解。具体而言,针对不同类型的最值问题,分别构建相应的数学模型,并利用导数求极值、判断函数单调性等方法,寻求最优解;并给出一些备考策略与技巧以供读者学习。
关键词 : 数学模型;导数应用;最值问题;求解策略
参考文献
[1] 周晓霞 . 概率统计与函数的交汇 [J]. 中学数学,2023(3):49-50.
[2] 黄嵩涛 . 高考概率统计命题规律及考向预测[J]. 广东教育(高中版),2024(3):20-26.
[3] 孙建国 . 聚焦概率统计与其他知识的交汇 [J].中学生数理化,2024(5):26-33.
[4] 郭建华 , 刘权华 , 于道洋 , 等 . 立足高考评价体系强化数学应用意识——以 2020-2023 年四年新高考Ⅰ卷概率与统计试题统计与分析为例 [J]. 数学通报 ,2024,63(04):43-50.
[5] 朱 建 生 . 新 课 程 改 革 背 景 下 的 高 中 数学 概 率 统 计 教 学 方 法 研 究 [J]. 教 师 教 育 论坛 ,2022,35(10):55-57.